800G OSFP800 DR8 Specification

R12OSFP-800G-DR8 / R16OSFP-800G-DR8

Features

- Form Factor: Hot-pluggable OSFP800 form factor
- Data Rate: Aggregate data rate of 850 Gb/s and Breakout data rate of 106.25 Gb/s
- Optical Interface: Compliant to 2×400GBASE-DR4 and 8x100GBASE-DR
- Electrical Interface: Compliant to 2×400GAUI-4 and 8x100GAUI-1
- Management Interface: I2C management interface
- Reach: Up to 500m over MPO/APC single mode fiber
- Power consumption: 16 W max
- Operating case temperature: 0 ~ 70 °C
- Power Supply: Single 3.3V power supply

Compliance

- Form Factor: OSFP MSA Rev 5.0
- Optical: IEEE802.3cd /IEEE802.3bs
- Electrical: IEEE802.3ck
- Firmware: CMIS 5.2
- Environment: RoHS
- Stability: GR-468-CORE

Applications

- 800Gb/s Ethernet
- Data Center

Functional Block Diagram

1. General Description

The 800G OSFP DR8 are high performance, cost effective transceivers designed for utilization in 800 Gigabit Ethernet links over 500 meters. On transmitter side, the module converts eight channels of 53.125 GBaud (PAM4) electrical data to eight channels of parallel optical signals with data rate of 53.125 GBaud (PAM4). At receiver side, the module converts eight channels of parallel optical signals with data rate of 53.125 GBaud (PAM4) electrical output data.

The product is designed according to the OSFP MSA. It is designed to meet the harshest external operating conditions including temperature, humidity and EMI interference.

2. Absolute Maximum Ratings and Recommended Operating Conditions

Parameter	Symbol	Min	Typical	Max	Unit
Storage Temperature	Ts	-40		85	°C
Relative Humidity (non-condensation)	RH	15		85	%
Supply Voltage	Vcc	-0.5		3.6	V
Optical Input Power, per Lane	PIN			5.0	dBm

(Table 2.1 Absolute Maximum Ratings)

(Table 2.2 Recommended Operating Conditions)

Parameter	Symbol	Min		Max	Unit
Operating Case Temperature	тс	0		70	°C
Signaling Rate, each lane			53.125		GBd
Data Rate Accuracy		-100		100	ppm
Power Supply Voltage	VCC	3.135	3.3	3.465	V
Pre-FEC Bit Error Ratio				2.4E-4	
Transmission Distance				500	m

3.Optical Specifications

3.1 Optical Transmitter

(Table 3.1 Transmitter optical characteristics)

Parameter	Symbol	Min	Typical	Max	Unit		
Signaling rate, each lane	SR	53	53.125+/-100ppm				
Modulation format							
Lane wavelength	λ	1304.5	1311.0	1317.5	nm		
Side-mode suppression ratio	SMSR	30			dB		
Average launch power, each lane ^a	ΑΟΡτχ	-2.9		4.0	dBm		
Outer Optical Modulation Amplitude (OMAouter), each lane ^b	ΟΜΑτχ	-0.8			dBm		
Launch power in OMAouter minus TDECQ, each lane		-2.2			dBm		

Transmitter and dispersion eye closure for PAM4, each lane	TDECQ		3.4	dB
Average launch power of OFF transmitter, each lane	AOPOFF		-15	dBm
Extinction ratio, each lane	ER	3.5		dB
RIN21.4OMA			-136	dB/Hz
Optical return loss tolerance	RLTol		21.4	dB
Transmitter reflectance	Reflectance_ Tx		-26	dB

Note:

a. Average launch power, each lane (min) is informative and not the principal indicator of signal strength.

A transmitter with launch power below this value cannot be compliant; however, a value above this does not ensure compliance.

b. Even if the TDECQ < 1.4 dB, the OMAouter (min) must exceed these values.

c. Transmitter reflectance is defined looking into the transmitter

3.2 Optical Receiver

Parameter		Symbol	Min	Typical	Max	Unit
Signaling ra	te, each lane	SR	53	.125+/-100p	pm	GBd
Modulati	on format			PAM4		-
Lane wa	velengths	λ	1304.5	1311.0	1317.5	nm
Damage thresh	nold, each laneª	DThd	5			dBm
Average receive	AOPRX	-5.9		4	dBm	
Receiver r	Reflectance_ Rx			-26	dB	
Receiver sensitivity (0	RxSens			-4.4	dBm	
Stressed receiver sensitiv	SRS			-1.9	dBm	
	Conditions of stresse	ed receiver sens	itivity test:			
Stressed eye closure for PA	M4 (SECQ), lane under test			3.4		dB
OMAouter of each aggressor lane				4.2		dBm
Rx LOS	LOS Assert	LOSA	-15		-7.9	dBm
	LOS De-assert	LOSD			-7.4	dBm
	LOS Hysteresis	LOSH	0.5		5	dB

Notes:

a. The receiver shall be able to tolerate, without damage, continuous exposure to an optical input signal having this average

power level. The receiver does not have to operate correctly at this input power.

b. Average receive power, each lane (min) is informative and not the principal indicator of signal strength. A received power

below this value cannot be compliant; however, a value above this does not ensure compliance.

c. Receiver sensitivity (OMAouter), each lane (max) is informative and is defined for a transmitter with SECQ of 0.9 dB.

d. Measured with conformance test signal at TP3 for the BER = 2.4E-4.

e. These test conditions are for measuring stressed receiver sensitivity. They are not characteristics of the receiver.

4.Electrical and DDM Specifications

4.1 Electrical Specifications

Parameter	Test Point	Min	Typical	Мах	Unit
Signaling rate, each lane	TP1	53	3.125 ± 100 pp	m	GBd
Differential pk-pk voltage tolerance	TP1a	750			mV
Peak-to-peak AC common-mode voltage tolerance Low-frequency, VCMLF Full-band, VCMFB	TP1a	32 80			mV
Differential-mode to common-mode return loss, RLcd	TP1	Equation (120G–2)			dB
Effective return loss, ERL	TP1	8.5			dB
Differential termination mismatch	TP1			10	%
Module stressed input tolerance	TP1a	See 120G.3.4.3			-
Single-ended voltage tolerance range	TP1a	-0.4		3.3	V
DC common-mode voltage tolerance	TP1	-0.35		2.85	V

(Table 4.1 Module input characteristics)

Parameter	Test Point	Min	Typical	Мах	Unit
Signaling rate, each lane	TP4	53	3.125 ± 100 pp	m	GBd
Peak-to-peak AC common-mode voltage	TP4			32	mV
Full-band, VCMFB				80	
Differential peak-to-peak output voltage				600	
Short mode Long mode	TP4			845	mV
Eye height	TP4	15			mV
Vertical eye closure, VEC	TP4			12	dB
Common-mode to differential-mode	TP4	Equation			dB
return loss, RLdc		(120G–1)			
Effective return loss, ERL	TP4	8.5			dB
Differential termination mismatch	TP4			10	%
Transition time	TP4	8.5			ps
DC common-mode voltage tolerance	TP4	-0.35		2.85	V

(Table 4.2 Module output characteristics at TP4)

4.2 Digital Diagnostic Monitor Accuracy

The following characteristics are defined over recommended operating conditions.

Parameter	Accuracy	Unit
Internally Measured Transceiver Temperature	+/-3	°C
Internally Measured Transceiver Supply Voltage	+/-3	%
Measured Tx Bias Current	+/-10	%
Measured Tx Output Power	+/-3	dB
Measured Rx Received Average Optical Power	+/-3	dB

(Table 4.3 Digital Diagnostic Monitor Accuracy)

5. User Interface

The memory map follows CMIS5.2 and is described as follows:

Figure 5.1 CMIS Module Memory Map

6. Pin Assignment and Description

The OSFP module pinout and connector pin list are as follows:

Pin#	Symbol	Description	Logic	Direction	Plug Sequence ¹	Notes
1	GND	Ground			1	
2	Tx2p	Transmitter Data Non-Inverted	CML-I	Input from Host	3	
3	Tx2n	Transmitter Data Inverted	CML-I	Input from Host	3	
4	GND	Ground			1	
5	Тх4р	Transmitter Data Non-Inverted	CML-I	Input from Host	3	
6	Tx4n	Transmitter Data Inverted	CML-I	Input from Host	3	
7	GND	Ground			1	
8	Тх6р	Transmitter DataN on-Inverted	CML-I	Input from Host	3	
9	Tx6n	Transmitter Data Inverted	CML-I	Input from Host	3	
10	GND	Ground			1	
11	ТХ8р	Transmitter Data Non-Inverted	CML-I	Input from Host	3	
12	TX8n	Transmitter Data Inverted	CML-I	Input from Host	3	
13	GND	Ground			1	
14	SCL	2-wire Serial interface clock	LVCMOS- I/O	Bi-directional	3	Open-Drain with pullup resistor on Host
15	VCC	+3.3V Power		Power from Host	2	
16	VCC	+3.3V Power		Power from Host	2	
17	LPWn/PRSn ²	Low-Power Mode / Module Present	Multi-Level	Bi-directional	3	See pin description for required circuit
18	GND	Ground			1	
19	RX7n	Receiver Data Inverted	CML-O	Output to Host	3	
20	RX7p	Receiver Data Non-Inverted	CML-O	Output to Host	3	
21	GND	Ground			1	
22	RX5n	Receiver Data Inverted	CML-O	Output to Host	3	
23	RX5p	Receiver Data Non-Inverted	CML-O	Output to Host	3	
24	GND				1	
25	RX3n	Receiver Data Inverted	CML-O	Output to Host	3	
26	RX3p	Receiver Data Non-Inverted	CML-O	Output to Host	3	
27	GND	Ground			1	
28	RX1n	Receiver Data Inverted	CML-O	Output to Host	3	
29	RX1p	Receiver Data Non-Inverted	CML-O	Output to Hos	3	
30	GND	Ground			1	

(Table 6.1 OSFP connector pin list)

31	GND	Ground			1	
32	RX2p	Receiver Data Non-Inverted	CML-O	Output to Host	3	
33	RX2n	Receiver Data Inverted	CML-O	Output to Host	3	
34	GND	Ground			1	
35	RX4p	Receiver Data Non-Inverted	CML-O	Output to Host	3	
36	RX4n	Receiver Data Inverted	CML-O	Output to Host	3	
37	GND	Ground			1	
38	RX6p	Receiver Data Non-Inverted	CML-O	Output to Host	3	
39	RX6n	Receiver Data Inverted	CML-O	Output to Host	3	
40	GND	Ground			1	
41	RX8p	Receiver Data Non-Inverted	CML-O	Output to Host	3	
42	RX8n	Receiver Data Inverted	CML-O	Output to Host	3	
43	GND	Ground			1	
44	INT/RSTn³	Module Interrupt / Module Reset	ule Multi-Level Bi-directional		3	See pin description for required circuit
45	VCC	+3.3V Power	Power from Host		2	
46	VCC	+3.3V Power	+3.3V Power Power from Hc		2	
47	SDA	2-wire Serial interface data	LVCMOS- I/O	Bi-directional	3	Open-Drain with pullup resistor on Host
48	GND	Ground			1	
49	TX7n	Transmitter Data Inverted	CML-I	Input from Host	3	
50	TX7p	Transmitter Data Non-Inverted	CML-I	Input from Host	3	
51	GND	Ground			1	
52	TX5n	Transmitter Data Inverted	CML-I	Input from Host	3	
53	TX5p	Transmitter Data Non-Inverted	CML-I	Input from Host	3	
54	GND	Ground			1	
55	TX3n	Transmitter Data Inverted	CML-I	Input from Host	3	
56	ТХ3р	Transmitter Data Non-Inverted			3	
57	GND	Ground			1	
58	TX1n	Transmitter Data Inverted	CML-I	Input from Host	3	
59	TX1p	Transmitter Data Non-Inverted	CML-I	Input from Host	3	
60	GND	Ground			3	

Notes:

1. Plug Sequence specifies the mating sequence of the host connector and module. The contact sequence is 1,2,3.

 LPWn/PRSn is a multi-level signal for low power control from host to module and module presence indication from module to host. It designed according to OSFP Module Specification Section 13.5.3
INT/RSTn is a multi-level signal for interrupt request from module to host and reset control from host to module. It designed

7. Mechanical Dimensions

Figure 7.1 Package dimensions

8. Ordering Information

Part Number	Temperature Range	Distance	Media Connector	Fiber Type	E/O	O/E
R12OSFP-800G-DR8	0 to 70°C	500m	Dual MPO-12	SMF	Siph PIC	Siph PD
R16OSFP-800G-DR8	0 to 70°C	500m	MPO-16	SMF	Siph PIC	Siph PD